Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Infect Control Hosp Epidemiol ; : 1-3, 2022 May 04.
Article in English | MEDLINE | ID: covidwho-2324330

ABSTRACT

We used a self-reporting system to compare symptom frequency of hospital personnel with coronavirus disease 2019 before and after the emergence of the Omicron variant. Omicron was more likely to result in asymptomatic carriage (7% vs 12%; P = .009), and fewer symptoms were observed in those with booster vaccination.

2.
J Clin Virol ; 163: 105442, 2023 06.
Article in English | MEDLINE | ID: covidwho-2293536

ABSTRACT

BACKGROUND: In March 2020, nonpharmaceutical interventions (NPIs) including face coverings and social distancing were adopted to curb the spread of SARS-CoV-2. Over the course of the pandemic, adherence to these NPIs has varied and eventually became optional in most non healthcare settings. We investigated the impact of relaxation of NPI on the incidence of respiratory viruses other than SARS-CoV-2 at a tertiary cancer care hospital. METHODS: This was a retrospective cohort study of respiratory viral panel results performed at between 08/01/2014-07/31/2022. Only one viral target result per patient per year was included. Poisson regression models were used to compare 2019-2020, 2020-2021, and 2021-2022 incidence of respiratory viruses to those of 2014-2019. Interrupted time series analysis was performed using autoregressive integrated moving average models in order to compare expected and observed positivity rates. RESULTS: A large reduction in the odds of testing positive for a respiratory virus was observed for most respiratory viruses when comparing results from 2019 to 2020 group to the corresponding period in 2014-2019. Subsequent seasons showed ongoing reductions in the odds of testing positive while slowly increasing over time back toward pre-pandemic levels. A time interrupted series analysis showed that the monthly positivity rate for all respiratory pathogens were reduced after 03/01/2020, when compared to the expected values forecast, except for adenovirus. CONCLUSIONS: This study provides valuable data that could be used to guide public health practices and support the efficacy of NPIs in curtailing the spread of novel and endemic respiratory viruses.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , Retrospective Studies , SARS-CoV-2 , Neoplasms/epidemiology , Neoplasms/prevention & control
3.
Clin Infect Dis ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2306012

ABSTRACT

BACKGROUND: Sotrovimab is an anti-spike neutralization monoclonal antibody (mAB) developed to reduce the risk of Coronavirus Disease 2019 (COVID-19) progression and advancement to hospitalization in high-risk patients. Currently, there is limited research describing the association of sotrovimab treatment in patients with hematologic malignancies (HM) and the predictive factors of hospitalization. METHODS: We performed an observational study of 156 consecutive cancer patients who received sotrovimab at Memorial Sloan Kettering Cancer Center in New York City during the BA.1 Omicron surge. We evaluated the demographic, clinical, and laboratory characteristics of the patients who had subsequent COVID-19-related hospitalization(s) compared to those who did not. RESULTS: Among the 156 study patients, seventeen (17, 11%) were hospitalized of which four were readmitted for COVID-19-related complications; three deaths were attributed to COVID-19. Results from multivariable logistic regression show significant factors associated with hospitalization include patients on anti-CD20 therapy (adjusted OR = 5.59, 95% CI (1.73 - 18.12), p = 0.004) and with relapse/refractory disease (adjusted OR = 5.69, 95% CI (1.69 - 19.16), p = 0.005). Additionally, whole-genome sequencing of SARS-CoV-2 detected high occurrences of mutations in the spike gene associated with treatment-related resistance longitudinal samples from 11 patients treated with sotrovimab. CONCLUSIONS: While sotrovimab is effective at reducing COVID-19 hospitalization and disease severity in HM patients when administered early, patients who received anti-CD20 antibodies showed substantial morbidity. Due to the high potential for resistance mutation to sotrovimab and increased morbidity in patients on anti-CD20 therapy, combination treatment should be explored to determine whether it provides added benefits compared to monotherapy.

4.
Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology ; 2023.
Article in English | EuropePMC | ID: covidwho-2255272

ABSTRACT

Background In March 2020, nonpharmaceutical interventions (NPIs) including face coverings and social distancing were adopted to curb the spread of SARS-CoV-2. Over the course of the pandemic, adherence to these NPIs has varied and eventually became optional in most non healthcare settings. We investigated the impact of relaxation of NPI on the incidence of respiratory viruses other than SARS-CoV-2 at a tertiary cancer care hospital. Methods This was a retrospective cohort study of respiratory viral panel results performed at between 08/01/2014-07/31/2022. Only one viral target result per patient per year was included. Poisson regression models were used to compare 2019-2020, 2020-2021, and 2021-2022 incidence of respiratory viruses to those of 2014-2019. Interrupted time series analysis was performed using autoregressive integrated moving average models in order to compare expected and observed positivity rates. Results A large reduction in the odds of testing positive for a respiratory virus was observed for most respiratory viruses when comparing results from 2019-2020 group to the corresponding period in 2014-2019. Subsequent seasons showed ongoing reductions in the odds of testing positive while slowly increasing over time back toward pre-pandemic levels. A time interrupted series analysis showed that the monthly positivity rate for all respiratory pathogens were reduced after 03/01/2020, when compared to the expected values forecast, except for adenovirus. Conclusions This study provides valuable data that could be used to guide public health practices and support the efficacy of NPIs in curtailing the spread of novel and endemic respiratory viruses.

5.
Critical Care Medicine ; 51:554-554, 2023.
Article in English | Academic Search Complete | ID: covidwho-2238551

ABSTRACT

Even with higher hospital mortality Omicron patients also seemed to be less acutely ill as their requirement for mechanical ventilation, vasopressors and prone positioning was lower. We sought to compare the characteristics of critically ill cancer patients with Omicron variant to those infected with the ancestral strain. B Conclusions: b Critically ill cancer patients infected with the Omicron variant may be less likely to undergo tracheostomy however, they are more likely to die during their hospitalization. [Extracted from the article] Copyright of Critical Care Medicine is the property of Lippincott Williams & Wilkins and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

6.
Transplant Cell Ther ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2231854

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), disproportionately affects immunocompromised and elderly patients. Not only are hematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR) T-cell recipients at greater risk for severe COVID-19 and COVID-19-related complications, but they also may experience suboptimal immune responses to currently available COVID-19 vaccines. Optimizing the use, timing, and number of doses of the COVID-19 vaccines in these patients may provide better protection against SARS-CoV-2 infection and better outcomes after infection. To this end, current guidelines for COVID-19 vaccination in HCT and CAR T-cell recipients from the American Society of Transplantation and Cellular Therapy Transplant Infectious Disease Special Interest Group and the American Society of Hematology are provided in a frequently asked questions format.

8.
Sci Rep ; 12(1): 18968, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2106454

ABSTRACT

The Alpha (B.1.1.7) and Omicron (B.1.1.529, BA.1, BA.4 and BA.5) variants of concern (VOC) share several mutations in their spike gene, including mutations resulting in the deletion of two amino acids at position 69 and 70 (del 69-70) in the Spike protein. Del 69-70 causes failure to detect the S gene target on a widely used, commercial test, the TaqPath SARS-CoV-2 RT-PCR (Thermo Fisher). The S gene target failure (SGTF) signature has been used to preliminarily infer the presence of Alpha and Omicron VOC. We evaluated the accuracy of the SGTF signature in identifying these two variants through analysis of all positive SARS-CoV-2 samples tested on the TaqPath RT-PCR and sequenced by next generation sequencing between December 2020 to July 2022. 2324 samples were successfully sequenced including 914 SGTF positive samples. The sensitivity and specificity of the SGTF signature was 99.6% (95% CI 96.1-99.9%) and 98.6% (95% CI 99.2-99.8%) for the Alpha variant and 99.6% (95% CI 98.9-99.9%) and 99.8% (95% CI 99.4-99.9%) for the Omicron variant. At the peak of their corresponding wave, the positive predictive value of the SGTF was 98% for Alpha and 100% for Omicron. The accuracy of the SGTF signature was high, making this genomic signature a rapid and accurate proxy for identification of these variants in real-world laboratory settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , COVID-19/genetics , Genomics
9.
Transplant Cell Ther ; 28(12): 810-821, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2105499

ABSTRACT

This document is intended as a guide for diagnosis and management of Coronavirus Disease 2019 (COVID-19), caused by the virus SARS-CoV-2, in adult and pediatric HCT and cellular therapy patients. This document was prepared using available data and with expert opinion provided by members of the (ASTCT) Infectious Diseases Special Interest Group (ID-SIG) and is an update of pervious publication. Since our original publication in 2020, the NIH and IDSA have published extensive guidelines for management of COVID-19 which are readily accessible ( NIH Guidelines , IDSA Guidelines ). This update focuses primarily on issues pertaining specifically to HCT/cellular therapy recipients. Information provided in this manuscript may change as new information becomes available.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Adult , Humans , Child , COVID-19/therapy , SARS-CoV-2 , Cell- and Tissue-Based Therapy
10.
J Natl Compr Canc Netw ; 20(10): 1134-1138, 2022 10.
Article in English | MEDLINE | ID: covidwho-2080823

ABSTRACT

BACKGROUND: Whether COVID-19 vaccination and the associated immune response increases susceptibility to immune-related adverse events (irAEs) among patients treated with immune checkpoint inhibition (ICI) remains unknown. Short-term follow-up can assess the safety of concurrent administration of the vaccine and ICI treatment. METHODS: We conducted an electronic health record analysis of a cohort of 408 patients with cancer receiving ICI therapy and who were vaccinated for COVID-19 between January 16 and March 27, 2021. Patients were seen in follow-up for 90 days from the day of the first dose in this single-institution tertiary care center. We evaluated the incidence of irAEs and the frequency of each event type and grade among patients who experienced an irAE. We also evaluated the incidence of irAEs in patients who began a new immunotherapy agent after vaccination. RESULTS: Among 408 patients with cancer receiving ICI therapy (median age, 71 years; 217 [53%] male), administration of a COVID-19 mRNA vaccine within 90 days of ICI treatment was not associated with an increased incidence of irAEs. A total of 27 (7%) patients experienced a new irAE within the observation period. Among patients with previous irAEs from ICIs (n=54), 3 (6%) experienced a recurrent irAE, and of those initiating a new immunotherapy (n=52), 9 (17%) experienced an irAE. No excess risk of COVID-19 diagnosis was seen in this subset of patients receiving ICI therapy, and no breakthrough COVID-19 cases were seen after full COVID-19 vaccination. CONCLUSIONS: These findings should reassure providers that COVID-19 vaccination during ICI therapy is safe and efficacious.


Subject(s)
COVID-19 , Neoplasms , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines/adverse effects , Female , Humans , Immune Checkpoint Inhibitors/adverse effects , Male , Neoplasms/complications , Neoplasms/drug therapy , Retrospective Studies , Vaccines, Synthetic , mRNA Vaccines
11.
Clin Microbiol Infect ; 28(12): 1624-1628, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2035886

ABSTRACT

OBJECTIVE: To describe effectiveness of mRNA vaccines by comparing 2-dose (2D) and 3-dose (3D) healthcare worker (HCW) recipients in the setting of Omicron variant dominance. Performance of 2D and 3D vaccine series against SARS-CoV-2 variants and the clinical outcomes of HCWs may inform return-to-work guidance. METHODS: In a retrospective study from December 15, 2020 to January 15, 2022, SARS-CoV-2 infections among HCWs at a large tertiary cancer centre in New York City were examined to estimate infection rates (aggregated positive tests / person-days) and 95% CIs over the Omicron period in 3D and 2D mRNA vaccinated HCWs and were compared using rate ratios. We described the clinical features of post-vaccine infections and impact of prior (pre-Omicron) COVID infection on vaccine effectiveness. RESULTS: Among the 20857 HCWs in our cohort, 20,660 completed the 2D series with an mRNA vaccine during our study period and 12461 had received a third dose by January 15, 2022. The infection rate ratio for 3D versus 2D vaccinated HCWs was 0.667 (95% CI 0.623, 0.713) for an estimated 3D vaccine effectiveness of 33.3% compared to two doses only during the Omicron dominant period from December 15, 2021 to January 15, 2022. Breakthrough Omicron infections after 3D + 14 days occurred in 1,315 HCWs. Omicron infections were mild, with 16% of 3D and 11% 2D HCWs being asymptomatic. DISCUSSION: Study demonstrates improved vaccine-derived protection against COVID-19 infection in 3D versus 2D mRNA vaccinees during the Omicron surge. The advantage of 3D vaccination was maintained irrespective of prior COVID-19 infection status.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , New York City/epidemiology , SARS-CoV-2/genetics , Influenza, Human/prevention & control , RNA, Messenger/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Retrospective Studies , Health Personnel
12.
Immunity ; 55(10): 1779-1798, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2031360

ABSTRACT

Immunocompromised individuals and particularly those with hematologic malignancies are at increased risk for SARS-CoV-2-associated morbidity and mortality due to immunologic deficits that limit prevention, treatment, and clearance of the virus. Understanding the natural history of viral infections in people with impaired immunity due to underlying conditions, immunosuppressive therapy, or a combination thereof has emerged as a critical area of investigation during the COVID-19 pandemic. Studies focused on these individuals have provided key insights into aspects of innate and adaptive immunity underlying both the antiviral immune response and excess inflammation in the setting of COVID-19. This review presents what is known about distinct states of immunologic vulnerability to SARS-CoV-2 and how this information can be harnessed to improve prevention and treatment strategies for immunologically high-risk populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antiviral Agents , Humans , Pandemics/prevention & control
13.
Clin Infect Dis ; 75(1): e774-e782, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2017767

ABSTRACT

BACKGROUND: Vaccine-induced clinical protection against severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) variants is an evolving target. There are limited genomic level data on SARS CoV-2 breakthrough infections and vaccine effectiveness (VE) since the global spread of the B.1.617.2 (Delta) variant. METHODS: In a retrospective study from 1 November 2020 to 31 August 2021, divided as pre-Delta and Delta-dominant periods, laboratory-confirmed SARS CoV-2 infections among healthcare personnel (HCP) at a large tertiary cancer center in New York City were examined to compare the weekly infection rate-ratio in vaccinated, partially vaccinated, and unvaccinated HCP. We describe the clinical and genomic epidemiologic features of post-vaccine infections to assess for selection of variants of concern (VOC)/variants of interest (VOI) in the early post-vaccine period and impact of B.1.617.2 (Delta) variant domination on VE. RESULTS: Among 13658 HCP in our cohort, 12379 received at least 1 dose of a messenger RNA (mRNA) vaccine. In the pre-Delta period overall VE was 94.5%. Whole genome sequencing (WGS) of 369 isolates in the pre-Delta period did not reveal a clade bias for VOC/VOI specific to post-vaccine infections. VE in the Delta dominant phase was 75.6%. No hospitalizations occurred among vaccinated HCP in the entire study period, compared to 17 hospitalizations and 1 death among unvaccinated HCP. CONCLUSIONS: Findings show high VE among HCP in New York City in the pre-Delta phase, with moderate decline in VE post-Delta emergence. SARS CoV-2 clades were similarly distributed among vaccinated and unvaccinated infected HCP without apparent clustering during the pre-Delta period of diverse clade circulation. Strong vaccine protection against hospitalization was maintained through the entire study period.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Delivery of Health Care , Genomics , Humans , New York City/epidemiology , RNA, Messenger , Retrospective Studies , SARS-CoV-2/genetics
14.
Curr Opin Infect Dis ; 35(4): 271-279, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1948612

ABSTRACT

PURPOSE OF REVIEW: Cancer patients, especially those with hematologic malignancies, are at increased risk for coronavirus disease 2019 (COVID-19)-related complications and mortality. We describe the incidence, clinical characteristics, risk factors, and outcomes of persistent COVID-19 infection in patients with hematologic malignancies. RECENT FINDINGS: The syndrome of persistent COVID-19 in patients with hematologic malignancies manifests as a chronic protracted illness marked by waxing and waning or progressive respiratory symptoms and prolonged viral shedding. Immunosuppressed patients with lymphoid malignancies may serve as partially immune reservoirs for the generation of immune-evasive viral escape mutants. SUMMARY: Persistent COVID-19 infection is a unique concern in patients with hematologic malignancies. While vaccination against severe acute respiratory syndrome coronavirus 2 has reduced the overall burden of COVID-19 in patients with hematologic cancers, whether vaccination or other novel treatments for COVID-19 prevent or alleviate this syndrome remains to be determined.


Subject(s)
COVID-19 , Hematologic Neoplasms , COVID-19/complications , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Humans , Risk Factors , SARS-CoV-2 , Virus Shedding
16.
Infect Control Hosp Epidemiol ; 43(10): 1413-1415, 2022 10.
Article in English | MEDLINE | ID: covidwho-1747328

ABSTRACT

In this retrospective study of 105 severe acute respiratory coronavirus virus 2 (SARS-CoV-2)-infected cancer patients with longitudinal nasopharyngeal sampling, the duration of viral shedding and time to attain cycle threshold >30 was longer in patients with hematologic malignancy than in those with solid tumors. These findings have important public health implications.


Subject(s)
COVID-19 , Neoplasms , Humans , Virus Shedding , SARS-CoV-2 , Retrospective Studies , RNA, Viral , Neoplasms/complications
17.
Clin Infect Dis ; 74(9): 1579-1585, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1707816

ABSTRACT

BACKGROUND: There is limited information on the risk of hospital-acquired coronavirus disease 2019 (COVID-19) among high-risk hospitalized patients after exposure to an infected patient or healthcare worker (HCW) in a nonoutbreak setting. METHODS: This study was conducted at a tertiary care cancer center in New York City from 10 March 2020 until 28 February 2021. In early April 2020, the study institution implemented universal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing at admission and retesting every 3 days through the hospital stay. Contact tracing records were reviewed for all exposures to SARS-CoV-2 positive patients and HCWs. RESULTS: From 10 March 2020 to 28 February 2021, 11 348 unique patients who were SARS-CoV-2 polymerase chain reaction (PCR) negative at the time of admission underwent 31 662 postadmission tests during their hospitalization, and 112 tested positive (0.98%). Among these, 49 patients housed in semiprivate rooms during admission resulted in 74 close contacts and 14 secondary infections within 14 days, for an overall attack rate of 18.9%. Among those exposed to a roommate undergoing an aerosol-generating procedure (AGP), the attack rate was 35.7%. Whole genome sequencing (WGS) corroborated transmission in 6/8 evaluated pairs. In addition, three transmission events occurred in 214 patients with significant exposure to 105 COVID-19 positive healthcare workers (1.4%). CONCLUSIONS: The overall risk of hospital-acquired COVID-19 is low for hospitalized cancer patients, even during periods of high community prevalence. However, shared occupancy with an unrecognized case is associated with a high secondary attack rate in exposed roommates.


Subject(s)
COVID-19 , Neoplasms , COVID-19/diagnosis , COVID-19/epidemiology , Contact Tracing , Delivery of Health Care , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional , Neoplasms/epidemiology , SARS-CoV-2
18.
Cancer Discov ; 12(1): 62-73, 2022 01.
Article in English | MEDLINE | ID: covidwho-1595223

ABSTRACT

Coronavirus disease 2019 (COVID-19) infection results in both acute mortality and persistent and/or recurrent disease in patients with hematologic malignancies, but the drivers of persistent infection in this population are unknown. We found that B-cell lymphomas were at particularly high risk for persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity. Further analysis of these patients identified discrete risk factors for initial disease severity compared with disease chronicity. Active therapy and diminished T-cell counts were drivers of acute mortality in COVID-19-infected patients with lymphoma. Conversely, B cell-depleting therapy was the primary driver of rehospitalization for COVID-19. In patients with persistent SARS-CoV-2 positivity, we observed high levels of viral entropy consistent with intrahost viral evolution, particularly in patients with impaired CD8+ T-cell immunity. These results suggest that persistent COVID-19 infection is likely to remain a risk in patients with impaired adaptive immunity and that additional therapeutic strategies are needed to enable viral clearance in this high-risk population. SIGNIFICANCE: We describe the largest cohort of persistent symptomatic COVID-19 infection in patients with lymphoid malignancies and identify B-cell depletion as the key immunologic driver of persistent infection. Furthermore, we demonstrate ongoing intrahost viral evolution in patients with persistent COVID-19 infection, particularly in patients with impaired CD8+ T-cell immunity.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
COVID-19/immunology , COVID-19/virology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/virology , Persistent Infection/immunology , Persistent Infection/virology , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Female , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology , T-Lymphocytes/immunology
19.
Blood Cancer Discov ; 2(6): 577-585, 2021 11.
Article in English | MEDLINE | ID: covidwho-1518190

ABSTRACT

Cellular therapies including allogeneic hematopoietic cell transplant (allo-HCT) and autologous hematopoietic cell transplant (auto-HCT) and chimeric antigen receptor (CAR) T-cell therapy render patients severely immunocompromised for extended periods after therapy, and data on responses to COVID-19 vaccines are limited. We analyzed anti-SARS-CoV-2 spike IgG Ab (spike Ab) titers and neutralizing Ab among 217 recipients of cellular treatments (allo-HCT, n = 149; auto-HCT, n = 61; CAR T-cell therapy, n = 7). At 3 months after vaccination, 188 patients (87%) had positive spike Ab levels and 139 (77%) had positive neutralization activity compared with 100% for both in 54 concurrent healthy controls. Time from cellular therapy to vaccination and immune recovery post-cellular therapy were associated with response. Vaccination against COVID-19 is an important component of post-cellular therapy care, and predictors of quantitative and qualitative response are critical in informing clinical decisions about optimal timing of vaccines and the requirement for booster doses. Significance: Identifying predictors of response to vaccination against SARS-CoV-2 in patients following cellular therapy is critical to managing this highly vulnerable patient population. To date, this is the most comprehensive study evaluating quantitative and qualitative responses to vaccination, providing parameters most predictive of response and potentially informing booster vaccination strategies.See related article by Chung et al., p. 568. This article is highlighted in the In This Issue feature, p. 549.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , COVID-19 Vaccines , Humans , Immunotherapy, Adoptive , SARS-CoV-2 , Vaccination
20.
Blood Cancer Discov ; 2(6): 568-576, 2021 11.
Article in English | MEDLINE | ID: covidwho-1518189

ABSTRACT

Coronavirus disease-19 (COVID-19) vaccine response data for patients with hematologic malignancy, who carry high risk for severe COVID-19 illness, are incomplete. In a study of 551 hematologic malignancy patients with leukemia, lymphoma, and multiple myeloma, anti-SARS-CoV-2 spike IgG titers and neutralizing activity were measured at 1 and 3 months from initial vaccination. Compared with healthy controls, patients with hematologic malignancy had attenuated antibody titers at 1 and 3 months. Furthermore, patients with hematologic malignancy had markedly diminished neutralizing capacity of 26.3% at 1 month and 43.6% at 3 months, despite positive seroconversion rates of 51.5% and 68.9% at the respective time points. Healthy controls had 93.2% and 100% neutralizing capacity at 1 and 3 months, respectively. Patients with leukemia, lymphoma, and multiple myeloma on observation had uniformly blunted responses. Treatment with Bruton tyrosine kinase inhibitors, venetoclax, phosphoinositide 3-kinase inhibitors, anti-CD19/CD20-directed therapies, and anti-CD38/B-cell maturation antigen-directed therapies substantially hindered responses, but single-agent immunomodulatory agents did not. Significance: Patients with hematologic malignancy have compromised COVID-19 vaccine responses at baseline that are further suppressed by active therapy, with many patients having insufficient neutralizing capacity despite positive antibody titers. Refining vaccine response parameters is critical to guiding clinical care, including the indication for booster vaccines, for this vulnerable population.See related article by Tamari et al., p. 577. This article is highlighted in the In This Issue feature, p. 549.


Subject(s)
COVID-19 , Hematologic Neoplasms , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immunity, Humoral , Phosphatidylinositol 3-Kinases , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL